If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=3=165
We move all terms to the left:
2x^2-(3)=0
a = 2; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·2·(-3)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*2}=\frac{0-2\sqrt{6}}{4} =-\frac{2\sqrt{6}}{4} =-\frac{\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*2}=\frac{0+2\sqrt{6}}{4} =\frac{2\sqrt{6}}{4} =\frac{\sqrt{6}}{2} $
| 102=5x+x | | 3x+15+10x=4+2x | | 7(x-9)=8(x-6) | | 3l-5=5l-7 | | 3x^2+18x+27=0 | | 10x-25=9x-25 | | 3(1x+1)=6 | | x+2x+4•2x=176 | | 7(x−9)=8x−6 | | H(t)=-10t^2+60t+5 | | 50+66-3x+7x=180 | | X+x/2+(x-10)=490 | | -4+5x=4x+7 | | 480(37x-97)=32(26x-243) | | 2.45=y–1.3 | | 5+3x10=35 | | 7-4x=18-15x | | 16-2t=1.50+9 | | 2(4x-9)=13x+2 | | 20n-30n=520 | | 7(y+6)+y=2(y+2)+2= | | 2p-3=5-2p | | 1/2(2x-3)^=2 | | -9-4x=7x-42 | | 7y+6)+y=2(y+2)+2= | | 4-2/5x=2/5x-5 | | 4(3x+8)=-8+4 | | 1/5x^2+4=12 | | 3/7x+3=1/8 | | 11x+5=6x+3+5x-7 | | 550(36x-99)=30(28x-256) | | 7-x/4=-5 |